首页

当前位置: 网站首页 / 学术科研 / 正文

【学术讲座】石油与化学工程学院2016-2017学年春季学期第6次导论课通知

来源: 作者: 编辑:王凯群 更新:2017-06-12
分享到:

课程名称:石油与化学工程学院导论课

专题:Membrane Technology for Clean Water

Understanding Nanofiltration: A Molecular Separation with Nanometer Effects

Approaches to Prepare HF PVDF based MF, UF & NF Membranes for Clean Water

授课时间:201761415:00-16:302学时)

授课地点:A01-W201

主讲人:王晓琳

听课班级:石油与化学工程学院20152016级学生,欢迎其他师生参加。

 

【主讲人简介】

王晓琳

日本东京大学工学博士,清华大学教授、博士生导师,膜材料与工程北京市重点实验室主任兼职:《膜科学与技术》副主任编委,《水处理技术》常务编委,“中国海水淡化及水再利用学会”常务理事,“中国膜工业协会”专家委员会委员暨“膜工程与技术委员会”副主任,“北京化工学会”理事,“北京膜学会”副理事长等;国际膜与膜过程大会(International Congress on Membranes and Membrane Processes, ICOM2014大会主席,亚太膜学会 (Asianian Membrane Society, AMS)38届会议大会主席,第4~10AMS会议学术委员会委员等。

研究简介:主要从事纳滤膜为代表的压力驱动膜传递机理与膜过程研究、水处理用分离膜材料的可控制备及其表面改性研究,电驱动膜过程与新型储能材料电化学研究等 3个方面的基础及应用基础研究。在膜科学与技术研究方面取得了系列研究成果,先后主持和承担过国家自然科学基金、国家863/973/支撑计划、北京市教委/科委重点项目以及国际合作项目。至今发表SCI收录论文180余篇,SCI 他引 3800 余次,出版专著1部、译著1部,申请发明专利 20多项,获教育部提名国家自然科学 2 等奖 1 项(2004)、中国石油和化工联合会科技进步一等奖1项(2014年)、北京市技术发明二等奖1项(2014年)、侯德榜化工科技奖(2015年)。

 

【授课内容摘要】

Nanofiltration (NF) membrane, firstly named as “loose” Reverse osmosis (RO) or “dense” Ultrafiltration (UF) membrane, has two remarkable features: one is the molecular weight cut-offs (MWCO) ranges from 200 to 2000Da, and the other is the salt rejection depends on the ion valence and concentration. Several models for NF processes have been proposed, such as the pore model based on the sieving effect, the charge model based on the electrostatic effect, the electrostatic steric-hindrance (ES) model, and the Donnan steric pore model (DSPM) have been proposed, which play an important role in understanding the separation mechanism and promoting the application of NF. Afterward, almost all of the RO membrane manufacturers have produced a series of NF membranes for the purification and advanced treatment of water. However, the performances of these NF membranes with features of “loose” RO membranes cannot be predicted by commercial RO simulation software. It leads to a long period of previous experiments and scale-up process, which severely restricts the large scale standardization applications of NF. In regard to these problems, we proposed a simple simulation model for the separation performance of mixed salts solution across NF membranes to promote the application of NF during the water treatment in the light of the competitive effect among co-ions and regulation effect among counter-ions. Both two effects can be determined by some specific experiments. And then based on the in-depth experimental studies on rejection performance and the attendant electrokinetic properties, some researchers have found that the performance of NF membranes cannot be predicted completely by merely considering the sieving and electrostatic effect, but some drawbacks still exist in the analysis of electrokinetic properties. The further studies have contributed to a deeper understanding on the particular effect caused by the nano-scale pore size and charge features caused by the complicated interaction in solution. Moreover, the dielectric effect in the transport process of ions through NF membranes has been addressed and quantitatively analyzed. Recent studies have been paid much attention on the new generation of NF membranes improved by various nanostructured materials. We also made some try to develop some novel thin-film nano-composite NF membranes derived from the dual layer (PES/PVDF) hollow fiber UF membranes.

Polyvinylidene fluoride (PVDF) hollow fiber (HF) Microfiltration (MF) membranes were firstly prepared via thermally induced phase-separation (TIPS) method, where diphenyl carbonate (DPC) and diphenyl ketone (DPK) were used as primary diluents. The liquid - liquid phase-separation phenomena were found and the monotectic points of PVDF/DPC and PVDF/DPK systems appeared at PVDF concentration approximately 30 and 56 %(wt), respectively. The effects of polymer concentration and quenching temperature on the pore structure, porosity and tensile strength of the membranes were also investigated. Secondly a novel HF PVDF based ultrafiltration (UF) membrane was prepared by forming a thick poly(sulfobetaine) (PSB) layer on the hollow fiber PVDF MF membrane. The PVDF based polySB UF membrane has sieving effects with the MWCO of 5.2 µm and 85~105 kDa, respectively, which contributed to the greatly improved hydrophilicity, membrane strength and thermal property. The another way to prepare a HF PVDF based UF membrane was forming a thick polyethersulfone (PES) outer layer by using the non-solvent induced phase separation (NIPS) method. Thirdly Nanoparticles (NPs) reinforced thin-film composite (TFC) membranes containing a range of 50~200 nm nanoparticles [MWCNTs, GOs, LTA zeolites] in a polypiperazine-amide (PA) thin film layer were synthesized via sequential interfacial polymerization on PES/PVDF hollow fiber substrates. The hydrophilization process of the NPs was conducted to ensure the homogenous dispersion in the aqueous phase containing piperazine prior to the interfacial reaction, and their morphologies in the PA layer were confirmed by FT-IR spectroscopy, SEM, EDX, XPS, and TEM. For all the NPs reinforced TFC membranes, the water flux increased significantly. The separation performances of the monovalent and divalent ions of NaCL/Na2SO4 solutions were conducted. Finally a novel thin film nanocomposite (TFN) hollow fiber membrane was fabricated comprising the sulfobetaine polymer functionalized multiwalled carbon nanotubes (ZCNT). The TFN(ZCNT) hollow fiber membrane had much narrower pore sizes than TFN(CNT) hollow fiber membranes, which was due to the grafting PSB layer at the end of the open-mouth-ended CNTs. By increasing the chain length of PSB, the TFN(ZCNT) hollow fiber membrane showed simultaneously improved water permeability and separation capacity of dextrans and electrolytes.